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Coin Flipping

communication channel

Why do we need it?

1. Bit commitment
2. Leader election and zero-knowledge protocols
3. Secure identification

2 / 16



Coin Flipping with bias ε

I If Alice and Bob are honest then

Pr[c = 0] = Pr[c = 1] =
1

2

I If Alice cheats and Bob is honest then

pA∗ := max
A
{Pr[c = 0],Pr[c = 1]} ≤ 1

2
+ ε

I If Bob cheats and Alice is honest then

pB∗ := max
B
{Pr[c = 0],Pr[c = 1]} ≤ 1

2
+ ε

The cheating probability of the CF protocol is p∗ = max{pA∗ , pB∗ }.
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Coin flipping with information-theoretic security

Impossibility of classical CF pc = 1

Impossibility of perfect quantum CF (May97,LC98) pq > 1/2

Several non-perfect protocols (ATVY00, SR02, Amb04) pq ≤ 3/4

Kitaev’s SDP proof (2003) pq ≥ 1/
√

2

Chailloux, Kerenidis (2009) pq ≈ 1/
√

2
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In practice

Practical Considerations :
I Technological state of the art (ex: state generation)
I System transmission losses and noise
I Detectors’ dark counts and finite quantum efficiency
I Quantum memory

Loss-tolerant Protocols :
I Berlin et al (2009): pq = 0.9
I Chailloux (2010): pq = 0.86

Implementations :
I Molina-Terriza et al (2005)
I Nguyen et al (2008)
I Berlin et al (2011)
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The Protocol

The protocol uses K states |Φαi,ci〉, where
αi: basis and ci: bit

|Φαi,0〉 =
√
y|0〉+ (−1)αi

√
1− y|1〉

|Φαi,1〉 =
√

1− y|0〉 − (−1)αi
√
y|1〉

For any bit β ∈ {0, 1}, we define the
measurement basis:

Bβ = {|Φβ,0〉, |Φβ,1〉}

|0〉

|1〉

|Φ0,0〉

|Φ1,1〉

|Φ0,1〉

|Φ1,0〉

|+〉

|−〉

θ = cos−1y
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The Protocol
Alice Bob

choose {αi, ci}K1
{|Φαi,ci〉}K1−−−−−−−−−−−−−−−−→ choose {βi}K1

measure in {Bβi}K1
j, b←−−−−−−−−−−−−−−−− j: first measured pulse,

c′j : outcome, b ∈R {0, 1}
αj , cj−−−−−−−−−−−−−−−−→ If αj = βj and cj 6= c′j , abort.

Else x = cj ⊕ b

Properties

I No need for entanglement, use of attenuated laser source
I No need for a quantum memory
I Tolerance to losses and noise
I Small probability of honest players’ abort
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Security Analysis

Protocol Parameters : µ (photon number), K (number of pulses), y (state
coefficient), dB (dark counts), e (channel noise), Z (losses).

Honest Players - Abort :

ZK(1− dB)K︸ ︷︷ ︸
Pr (no click)

+
1

4

K∑
i=1

(1− dB)i−1dBZi

︸ ︷︷ ︸
Pr (dark count)

+
e

2

[
1− ZK(1− dB)K −

K∑
i=1

(1− dB)i−1dBZi]
︸ ︷︷ ︸

Pr (channel noise)

Dishonest Alice : pAq ≤ 3
4 + 1

2

√
y(1− y)

Dishonest Bob : Depends on the distribution of the number of multiple
photons in pulses (function of K,µ, y).
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The Clavis2 system

FM
Alice

PM

Preparation basis αi
Bit ci

Coefficient y

Mean
photon number μ

Bob

CBS

PM

VATT

LASER

Measurement
basis βi

Synchronization
and power control

PBS

BS DL

D1 D0
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HW and SW enhancements on the Clavis2

Hardware Changes

I Changed the detectors to high efficiency/low noise ones.

Software Changes

I Use of rotated BB84 states⇒ set coefficient y both in Alice and Bob.
I Use of very low µ: average photon number per pulse.

11 / 16



Adapting the security proofs

Assumptions

I Alice can create each state with equal probability and independently
of Bob.

I Bob’s basis βj and bit b are chosen uniformly at random and
independently of Alice.

I Bob’s detectors have the same efficiencies.

Adaptation

I Symmetrization of losses: Bob makes the two detection efficiencies
equal by throwing away some detection events.
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Experimental Results
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I Strictly stronger-than-classical security
I Practical implementation, off-the-shelf equipment
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Enhancing security against limited adversaries

Our protocol has information-theoretic security → Pr[cheat] is high
CF protocols against bounded adversaries → Pr[cheat] ≈ 0.5

Computationally bounded: based on the inability to invert 1-way
functions.

Noisy storage: based on the inability to maintain quantum information in
a memory for a long period of time.

Combined protocols
The security of our QCF protocol lies on top of the perfect security of the
bounded protocols, adding a guarantee against unbounded adversaries.
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Coin Flipping

Summary
I We have shown, both theoretically and experimentally, that flipping a

single coin with security guarantees strictly better than classical, can
be achieved with present day technology.

I We provided security proofs that take into account all standard
imperfections, including asymmetries in detection efficiencies,
multi-photon pulses, losses and noise.

Open Questions
I Side-channel or other types of attacks?
I Use of decoy states or some kind of error-correcting code?
I Further study of other types of bounded adversaries?
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